Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(18): 10047-10065, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37522285

RESUMO

The neural cell adhesion molecule 2 (NCAM2) regulates axonal organization in the central nervous system via mechanisms that have remained poorly understood. We now show that NCAM2 increases axonal levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), a protease that regulates axonal guidance. In brains of NCAM2-deficient mice, BACE1 levels are reduced in hippocampal mossy fiber projections, and the infrapyramidal bundle of these projections is shortened. This abnormal axonal organization correlates with impaired short-term spatial memory and cognitive flexibility in NCAM2-deficient male and female mice. Self-grooming, rearing, digging and olfactory acuity are increased in NCAM2-deficient male mice, when compared with littermate wild-type mice of the same sex. NCAM2-deficient female mice also show increased self-grooming, but are reduced in rearing, and do not differ from female wild-type mice in olfactory acuity and digging behavior. Our results indicate that errors in axonal guidance and organization caused by impaired BACE1 function can underlie the manifestation of neurodevelopmental disorders, including autism as found in humans with deletions of the NCAM2 gene.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Hipocampo/metabolismo , Fibras Musgosas Hipocampais , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo
2.
Cell Mol Life Sci ; 79(11): 555, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36251052

RESUMO

Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), also known as ß-secretase, is an aspartic protease. The sorting of this enzyme into Rab11-positive recycling endosomes regulates the BACE1-mediated cleavage of its substrates, however, the mechanisms underlying this targeting remain poorly understood. The neural cell adhesion molecule 2 (NCAM2) is a substrate of BACE1. We show that BACE1 cleaves NCAM2 in cultured hippocampal neurons and NCAM2-transfected CHO cells. The C-terminal fragment of NCAM2 that comprises the intracellular domain and a small portion of NCAM2's extracellular domain, associates with BACE1. This association is not affected in cells with inhibited endocytosis, indicating that the interaction of NCAM2 and BACE1 precedes the targeting of BACE1 from the cell surface to endosomes. In neurons and CHO cells, this fragment and BACE1 co-localize in Rab11-positive endosomes. Overexpression of full-length NCAM2 or a recombinant NCAM2 fragment containing the transmembrane and intracellular domains but lacking the extracellular domain leads to an increase in BACE1 levels in these organelles. In NCAM2-deficient neurons, the levels of BACE1 are increased at the cell surface and reduced in intracellular organelles. These effects are correlated with increased levels of the soluble extracellular domain of BACE1 in the brains of NCAM2-deficient mice, suggesting increased shedding of BACE1 from the cell surface. Of note, shedding of the extracellular domain of Sez6, a protein cleaved exclusively by BACE1, is reduced in NCAM2-deficient animals. These results indicate that the BACE1-generated fragment of NCAM2 regulates BACE1 activity by promoting the targeting of BACE1 to Rab11-positive endosomes.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Cricetinae , Cricetulus , Endossomos/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/metabolismo
3.
Front Mol Neurosci ; 13: 592126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281551

RESUMO

Cell adhesion molecules (CAMs) mediate interactions of neurons with the extracellular environment by forming adhesive bonds with CAMs on adjacent membranes or via binding to proteins of the extracellular matrix. Binding of CAMs to their extracellular ligands results in the activation of intracellular signaling cascades, leading to changes in neuronal structure and the molecular composition and function of neuronal contacts. Ultimately, many of these changes depend on the synthesis of new proteins. In this review, we summarize the evidence showing that CAMs regulate protein synthesis by modulating the activity of transcription factors, gene expression, protein translation, and the structure and distribution of organelles involved in protein synthesis and transport.

4.
Neuroscientist ; 26(5-6): 415-437, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32449484

RESUMO

The efficient targeting of ionotropic receptors to postsynaptic sites is essential for the function of chemical excitatory and inhibitory synapses, constituting the majority of synapses in the brain. A growing body of evidence indicates that cell adhesion molecules (CAMs), which accumulate at synapses at the earliest stages of synaptogenesis, are critical for this process. A diverse variety of CAMs assemble into complexes with glutamate and GABA receptors and regulate the targeting of these receptors to the cell surface and synapses. Presynaptically localized CAMs provide an additional level of regulation, sending a trans-synaptic signal that can regulate synaptic strength at the level of receptor trafficking. Apart from controlling the numbers of receptors present at postsynaptic sites, CAMs can also influence synaptic strength by modulating the conductivity of single receptor channels. CAMs thus act to maintain basal synaptic transmission and are essential for many forms of activity dependent synaptic plasticity. These activities of CAMs may underlie the association between CAM gene mutations and synaptic pathology and represent fundamental mechanisms by which synaptic strength is dynamically tuned at both excitatory and inhibitory synapses.


Assuntos
Moléculas de Adesão Celular/metabolismo , Ácido Glutâmico/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Humanos , Receptores de GABA/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
5.
Genomics ; 111(6): 1676-1686, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30465913

RESUMO

Long term potentiation (LTP) is a form of synaptic plasticity. In the present study LTP was induced via activation of synaptic NMDA receptors in primary hippocampal neuron cultures from neonate mice and RNA was isolated for RNA sequencing at 20 min following LTP induction. RNA sequencing and differential expression testing was performed to determine the identity and abundance of protein-coding and non-coding RNAs in control and LTP induced neuron cultures. We show that expression levels of a small group of transcripts encoding proteins involved in negative regulation of gene expression (Adcyap1, Id3), protein translation (Rpl22L1), extracellular structure organization (Bgn), intracellular signalling (Ppm1H, Ntsr2, Cldn10) and protein citrullination (PAD2) are downregulated in the stimulated neurons. Our results suggest that the early stages of LTP are accompanied by the remodelling of the biosynthetic machinery, interactions with the extracellular matrix and intracellular signalling pathways at the transcriptional level.


Assuntos
Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/biossíntese , Sinapses/metabolismo , Transcriptoma/fisiologia , Animais , Feminino , Regulação da Expressão Gênica , Hipocampo/citologia , Masculino , Camundongos , Neurônios/citologia , Receptores de N-Metil-D-Aspartato/genética , Sinapses/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...